Differentially Private Hierarchical Count-of-Counts Histograms

Yu-Hsuan Kuo

Computer Science & Engineering Penn State University

August 30 2018

Collaborators

Cho-Chun Chiu, Daniel Kifer, Michael Hay, Ashwin Machanavajjhala

Outline

Introduction: hierarchical count-of-counts histograms

- 2 Non-hierarchical count-of-counts histograms publishing
- Hierarchical count-of-counts histograms publishing
- Experimental results

Scenario

- Table Persons(person_name, group_id, location)
- \bullet A hierarchy Γ on location associated with each group

name	g_id	loc.
Alice	1	а
Bob	1	а
Carol	1	а
Dave	1	а
Eve	2	b
Frank	2	b
Judy	3	а
Nick	4	b

Queries: In the United States,

- How many groups have size 1 ?
- How many groups have size 2 ? In New York,
 - How many groups have size 1 ?
 - How many groups have size 2 ?

Application:

- **1** group = a taxi, data item = a pick up, size = # of pickup
- group = a census block, data item = a person of a specific race, size = # people of a specific race

Convenient Views of the Dataset

- A=SELECT groupid, COUNT(*) AS size FROM Persons GROUPBY groupid
- H=SELECT size, COUNT(*) FROM A GROUPBY size

SQL query resulting table A:

g_id	size	loc.	
1	4	а	
2	2	b	
3	1	а	
4	1	b	

- <u>count-of-counts histogram</u> (coco) H is $H^{\text{root}} = [2, 1, 0, 1]$ $H^a = [1, 0, 0, 1]$
- unattributed histogram [HRMS10] H_g is $H_g^{\text{root}} = [1, 1, 2, 4]$ $H_g^a = [1, 4]$
- cumulative count-of-counts histogram H_c is $H_c^{root} = [2, 3, 3, 4]$ $H_c^a = [1, 1, 1, 2]$

Protect Privacy

Definition (Differential Privacy [DMNS06])

A mechanism M satisfies ϵ -differential privacy if, for any pair of databases D_1 , D_2 that differ by the presence or absence of one record in the Persons table, and for any possible set S of outputs of M, the following is true:

$$P(M(D_1) \in S) \leq e^{\epsilon} P(M(D_2) \in S)$$

Geometric Mechanism

Definition (Sensitivity)

Given a query q (which outputs a vector), the global sensitivity of q, denoted by $\Delta(q)$ is defined as:

$$\Delta(q) = \max_{D_1,D_2} ||q(D_1) - q(D_2)||_1,$$

where databases D_1 , D_2 contain the public Hierarchy and Groups tables, and differ by the presence or absence of one record in the Persons table.

Definition (Geometric Mechanism [GRS09])

Given a database D, a query q that outputs a vector, a privacy loss budget ϵ , the global sensitivity $\Delta(q)$, the geometric mechanism adds independent noise to each component of q(D) using distribution: $P(X = k) = \frac{1-e^{-\epsilon}}{1+e^{-\epsilon}}e^{-\epsilon|k|/\Delta(q)}$ (for $k = 0, \pm 1, \pm 2$, etc.). This distribution is known as the double-geometric with scale $\Delta(q)/\epsilon$.

Problem Definition

For each node τ in hierarchy Γ , create differentially private estimate $\tau \cdot \hat{H}$ of count-of-counts histogram H such that

- $\tau . \hat{H}$ is a count-of-counts histogram (its entries are nonnegative integers)
- The counts are accurate $(\tau.\hat{H} \text{ and } \tau.H \text{ are close})$
- $au. \widehat{H}$ matches publicly known total number of groups G in au
- satisfy consistency: children histograms sum up to the parent.

Error Measure

• The Earthmover's distance (emd): the minimum number of people that must be added or removed from groups in τ .H to get τ . \hat{H} .

emd = $|H_c - \widehat{H_c}|_1 = |H_g - \widehat{H_g}|_1 = 2$

Lemma ([NLV07])

The earthmover's distance between H and \hat{H} can be computed as $||H_c - \hat{H}_c||_1$, where H_c (resp., \hat{H}_c) is the cumulative histogram of H (resp., \hat{H}). It is the same as the L_1 norm in the H_g representation when the number of groups is fixed.

Outline

- Introduction: hierarchical count-of-counts histograms
- 2 Non-hierarchical count-of-counts histograms publishing
- Hierarchical count-of-counts histograms publishing
- Experimental results

Naive Strategy

- *H*: Add independent double-geometric noise with scale 2/e to each element of coco histogram *H*
- **2** Post-process \widetilde{H} with optimization problem:

$$\begin{split} \widehat{H} &= \arg\min_{\widehat{H}} ||\widetilde{H} - \widehat{H}||_{2}^{2} \\ \text{s.t. } \widehat{H}[i] \geq 0 \text{ for all } i \quad \text{and } \sum_{i} \widehat{H}[i] = G \end{split}$$

- To get integers, we set $r = G \sum_i \lfloor \widehat{H}[i] \rfloor$, round the cells with the *r* largest fractional parts up, and round the rest down.
- Solver: quadratic program (e.g., Gurobi [GO16])

Unattributed Histogram [HRMS10] H_g

- **()** Convert coco histogram $H \Rightarrow$ unattributed histogram H_g
- 3 \widetilde{H}_g : Add independent double-geometric noise with scale $1/\epsilon$ to each element of H_g
- Solution Post-process with optimization problem with either p = 1 or p = 2:

$$\widehat{H}_{g} = rg\min_{\widehat{H}_{g}} ||\widetilde{H}_{g} - \widehat{H}_{g}||_{p}^{p}$$

s.t. $0 \leq \widehat{H}_{g}[i] \leq \widehat{H}_{g}[i+1]$ for $i = 0, \dots, G-1$

Round each entry of *Ĥ*_g to the nearest integer and convert it back to *Ĥ*Solver: min-max algorithm [BB72], pool-adjacent violators (PAV) [BBBB, RW⁺68], Gurobi [GO16]

Cumulative Sum Histograms H_c

- Convert coco histogram $H \Rightarrow$ cumulative sum histogram H_c
- **2** H_c : Add independent double-geometric noise with scale $1/\epsilon$ to each element of H_c
- Post-process with optimization problem with either p = 1 or p = 2: $\widehat{H}_c = \arg\min_{\widehat{H}_c} ||\widehat{H}_c - \widetilde{H}_c||_p^p$ s.t. $0 \le \widehat{H}_c[i] \le \widehat{H}_c[i+1]$ for $i = 0, \dots, K$

and $\widehat{H}[K] = G$

Q Round each entry of *H_c* to the nearest integer and convert it back to *Ĥ*Q Solver: min-max algorithm [BB72], pool-adjacent violators (PAV) [BBBB, RW⁺68], Gurobi [GO16]

Methods Summary

- Naive approach had several orders of magnitude worse error than the unattributed histogram ${\sf H}_{{\sf g}}$ and cumulative sum histogram ${\sf H}_{{\sf c}}$ method
- $\bullet\,$ For most datasets, H_c method generally performs better
- $\bullet\,$ For sparse datasets, $H_g\,$ method is better

Outline

Introduction: hierarchical count-of-counts histograms

2 Non-hierarchical count-of-counts histograms publishing

- Hierarchical count-of-counts histograms publishing
- Experimental results

Non-hierarchical Methods Issue

- Estimate coco histograms at each node τ , c_1 , c_2
- Drawback: parent $au. \hat{H}$ does not equal to the sum of children $(c_1.\hat{H} + c_2.\hat{H})$

Mean-Consistency Algorithm [HRMS10]

- Take cumulative coco histograms H_c at every node
- O Add independent double-geometric noise with scale $1/\epsilon$ to each element of ${\cal H}_c$
- Ost-process with mean-consistency algorithm

• Drawback: counts can be negative and fractional

Bottom-up Aggregation

- Estimate coco histogram H only at the leaves
- 2 Aggregate them up the hierarchy

 Drawback: it introduces high error at non-leaf nodes (like in other hierarchical problems [HRMS10, QYL13])

Consistency Solution

- Our proposed solution:
 - Converts estimated coco $au. \hat{H} \Rightarrow$ the unattributed histogram $au. \hat{H}_g$
 - Find a 1-to-1 optimal matching between groups at the child nodes and groups at the parent node
 - Merge those two estimates

Figure: Before matching

Figure: Consistency result

Optimal Matching Algorithm

- For each node au and its children, we set up a bipartite weighted graph
- There are $\tau.G$ vertices on the top: $(\tau, 1), (\tau, 2), \dots, (\tau, \tau.G)$. Each vertices on the bottom has the form (c, j), where c is a child of τ and j is an index into $c.\hat{H}_g$.
- Edge between every vertex (τ, i) and (c, j) has weight $|\tau.\hat{H}_g[i] c.\hat{H}_g[j]|$: measure the difference in estimated size

- Our desired matching is least cost weighted matching on this bipartite graph.
- Optimal algorithm: matching the smallest unmatched group in τ to the smallest unmatched group among any of its children.

Top-down Consistency

Figure: Level 0 and Level 1 consistency matching

Figure: Level 1 and Level 2 consistency matching

- Consistency matching at top level
- Use new estimates for next level consistency
- Use the new merged estimates at the leaves for back substitution to get unattributed histogram:

$$\begin{split} \widehat{H}^a_g &= [1, 1, 1, 2, 9] \\ \widehat{H}^b_g &= [1, 3, 3, 6] \\ \widehat{H}^{root}_g &= [1, 1, 1, 1, 2, 3, 3, 6, 9] \end{split}$$

 Convert consist unattributed histogram in count-of-counts histogram

Initial Variance Estimation

Recall: we convert $\tau \cdot \hat{H}$ into the unattributed histogram $\tau \cdot \hat{H}_g$. For each *i*, we need an estimate of the variance of the *i*th largest group $\tau \cdot \hat{H}_g[i]$, so that it can be used to merge two estimates during matching.

• Let S_i be the number of groups that were in the same partition as i in the solution $s_1 = s_2$

• Let ϵ be the privacy budget used in node τ in level ℓ of Γ For the ${\bf H_g}$ method:

• Variance estimate for the *i*th largest group: $\tau . V_g[i] = \frac{2}{|S_i|\epsilon^2}$ For the **H**_c method:

• Variance estimate of the *i*th largest group: $\tau V_g[i] = 4/(\epsilon^2 \times \text{number of estimated groups of size } \tau \cdot \widehat{H}_g[i])$

Merge Estimates

Given a node τ , the matching algorithm assigns one group *i* in τ to one group *j* in some child of τ

 \Rightarrow for every group, two estimates of its size: $\tau \cdot \widehat{H}_{g}[i]$ and $c \cdot \widehat{H}_{g}[j]$ & estimates of variance $\tau \cdot V_{g}[i]$ and $c \cdot V_{g}[j]$.

• Optimal linear combination of the estimates [HRMS10]: weighted average

$$\left(\frac{\tau.\hat{H}_{g}[i]}{\tau.V_{g}[i]} + \frac{c.\hat{H}_{g}[j]}{c.V_{g}[j]}\right) \left/ \left(\frac{1}{\tau.V_{g}[i]} + \frac{1}{c.V_{g}[j]}\right)$$
(1)

and the variance of this estimator is

$$\left(\frac{1}{\tau \cdot V_g[i]} + \frac{1}{c \cdot V_g[j]}\right)^{-1} \tag{2}$$

Outline

- Introduction: hierarchical count-of-counts histograms
- 2 Non-hierarchical count-of-counts histograms publishing
- 3 Hierarchical count-of-counts histograms publishing
 - 4 Experimental results

Experiments

Use 4 datasets:

- Race distribution White (2010 Census data [Bur12]): For West Coast/State/County and a given race, for each *j*, how many Census blocks contain *j* people of that race?
- Race distribution Hawaiian [Bur12]
- Partially synthetic housing: The number of individuals in each facility is important but this information was truncated past households of size 7 in the 2010 Decennial Census Summary File 1 [Bur12]. We add a heavy tail as would be expected from group quarters (e.g., dormitories, barracks, correctional facilities).
- NYC taxi: In 2013, how many taxis had *j* pickups in Manhattan/Town/Neighborhood?

Ruling out Naive Strategy

• Naive strategy's average error is in the billions

Table: Average error with $\epsilon = 1.0$ at top level

Method	Synthetic	White	Hawaiian	Taxi
Naive	4,462,728,374	4,809,679,734	4,027,891,692	208,977,518
H _c	3,742.0	1,838.9	254.0	2,819.8
Hg	2,219.6	6,115.3	516.2	11,227.6

Experimental results

Weighted average estimation comparison

- Two choices at each level: H_c , H_g
- Weighted average method consistently produces large reductions in error at the top level

Figure: Merging estimates using weighted average vs. normal average. x-axis: privacy budget per level.

Comparison to Bottom-up Aggregation

- Allocate all privacy budget (total privacy budget of $\epsilon = 1.0$ in the table) to the leaves and set the coco histogram of a parent to be the sum of the histograms at the leaves.
- Very low error at the leaves but higher error everywhere else

	Part. Synth.	White	Hawaiian	Taxi			
	Level 0						
ΒU	78,459.0	448,909.0	13,968.0	20,731.0			
H _c	32,480.0	17,000.0	1,381.0	10,547.0			
Level 1							
ΒU	1,512.2	8,722.0	270.1	10,405.5			
H _c	1,000.3	1,511.8	117.7	5,431.5			
Level 2							
ΒU	24.9	152.3	4.3	772.8			
H _c	80.1	363.8	21.6	1,601.8			

Experimental results

3-Level Hierarchy Results

- Two alternatives $H_g \times H_g \times H_g$ and $H_c \times H_c \times H_c$
- Data dependent performance: H_c performs better in dense region while H_g performs better in sparse region
- Figure: 3-level consistency at each level. x-axis: privacy budget per level

Summary

- Introduced hierarchical count-of-counts problem, along with appropriate error metrics
- Proposed a differentially private solution that generates non-hierarchical and hierarchical version of count-of-counts histograms.
- $\bullet~H_c$ method generally performs better on dense dataset while datasets with more sparsity favor H_g method

Experimental results

Questions?

References

References I

- RE Barlow and HD Brunk. The isotonic regression problem and its dual. Journal of the American Statistical Association, pages 140–147, 1972.
- RE Barlow, DJ Bartholomew, JM Bremner, and HD Brunk. Statistical inference under order restrictions. 1972.
 - U.S. Census Bureau

2010 census summary file 1, 2010 census of population and housing, technical documentation.

https://www.census.gov/prod/cen2010/doc/sf1.pdf, 2012.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In Proceedings of the Third Conference on Theory of Cryptography, pages 265-284, 2006.

References

References II

Inc. Gurobi Optimization.

Gurobi optimizer reference manual, 2016.

- Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-maximizing privacy mechanisms. In <u>STOC</u>, pages 1673–1693, 2009.
- Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of differentially private histograms through consistency.
 PVLDB, 3(1-2):1021–1032, 2010.
- T. Li N. Li and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-diversity. In <u>ICDE</u>, pages 106–115, 2007.

References

References III

Wahbeh Qardaji, Weining Yang, and Ninghui Li. Understanding hierarchical methods for differentially private histograms. PVLDB, 6(14):1954–1965, 2013.

Tim Robertson, Paul Waltman, et al.
On estimating monotone parameters.
<u>The Annals of Mathematical Statistics</u>, pages 1030–1039, 1968.

