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Introduction

Consider the table Persons(person_name, group_id,
location) and a hierarchy Γ on location associated with
each group. A hierarchical count-of-counts histogram
queries on this table: for each geographic region (e.g.
the United States/New York), how many groups (e.g.
households) in that region have j people (i.e. of size j).

Table 1: Persons
name g_id loc.
Alice 1 a
Bob 1 a
Carol 1 a
Dave 1 a
Eve 2 b
Frank 2 b
Judy 3 a
Nick 4 b

• A=SELECT groupid,
COUNT(*) AS size FROM
Persons GROUPBY groupid

Table 2: A
g_id size loc.

1 4 a
2 2 b
3 1 a
4 1 b

The count-of-counts histograms can be obtained
by H=SELECT size, COUNT(*) FROM A GROUPBY
size

•count-of-counts histogram (coco) H is
H root = [2, 1, 0, 1]
Ha = [1, 0, 0, 1]

•unattributed histogram [1] Hg is
H root
g = [1, 1, 2, 4]

Ha
g = [1, 4]

•cumulative count-of-counts histogram Hc

H root
c = [2, 3, 3, 4]

Ha
c = [1, 1, 1, 2]

To protect privacy, the ε-differential privacy is applied
at the person level. We used the geometric mechanism.

Definition (Sensitivity)

Given a query q (which outputs a vector), the global
sensitivity of q, denoted by ∆(q) is defined as:

∆(q) = max
D1,D2
||q(D1)− q(D2)||1,

where databases D1, D2 contain the public Hierarchy
and Groups tables, and differ by the presence or absence
of one record in the Persons table.
Definition (Geometric Mechanism)

[2] Given a database D, a query q that outputs a
vector, a privacy loss budget ε, the global sensitiv-
ity ∆(q), the geometric mechanism adds independent
noise to each component of q(D) using distribution:
P (X = k) = 1−e−ε

1+e−εe
−ε|k|/∆(q) (for k = 0,±1,±2, etc.).

This distribution is known as the double-geometric with
scale ∆(q)/ε.

Problem Definition

For each node τ in hierarchy, create differentially private
estimate τ.Ĥ of coco histogram H such that
•The entries are nonnegative integers
•The counts are accurate (τ.Ĥ and τ.H are close)
• τ.Ĥ matches publicly known total # of groups in τ
•Consistency: children histograms sum up to the parent.

Error Measure
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Naive Strategy

Ĥ = arg min
Ĥ
||H̃ − Ĥ||pp

s.t. Ĥ [i] ≥ 0 for all i
and

∑
i
Ĥ [i] = G
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Unattributed Histogram [1] Hg

Ĥg = arg min
Ĥg

||H̃g − Ĥg||pp

s.t. 0 ≤ Ĥg[i] ≤ Ĥg[i + 1]
for i = 0, . . . , G− 1
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Cumulative Sum Histograms Hc

Ĥc = arg min
Ĥc

||Ĥc − H̃c||pp

s.t. 0 ≤ Ĥc[i] ≤ Ĥc[i + 1]
for i = 0, . . . , K and Ĥ [K] = G
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Solver: min-max algorithm [3], pool-adjacent violators (PAV), Gurobi
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•Our proposed solution:
1 Estimated coco τ.Ĥ ⇒ the unattributed
histogram τ.Ĥg

2 Find a 1-to-1 optimal matching between
groups at child nodes and groups at parent

3 Merge those two estimates

Optimal Matching

•For each node τ and its children, set
up a bipartite weighted graph
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•Least cost weighted matching
on this bipartite graph.

•Optimal algorithm: match the
smallest unmatched group in τ to the
smallest unmatched group among any
of its children.

Initial Variance Estimation
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•Let ε be the privacy budget used in node τ in level ` of Γ
•Variance estimate for the ith largest group τ.Vg[i]

2
|Si|ε2 if Hg method
4/(ε2 × number of estimated groups of size τ.Ĥg[i] if Hc method

Merge Estimates

Given size estimates: τ.Ĥg[i], c.Ĥg[j] & variance estimates τ.Vg[i], c.Vg[j].

•Optimal linear combination of the estimates [1]: weighted average(
τ.Ĥg[i]
τ.Vg[i] + c.Ĥg[j]

c.Vg[j]

)/(
1

τ.Vg[i] + 1
c.Vg[j]

)
and the variance of this estimator is(

1
τ.Vg[i] + 1

c.Vg[j]

)−1

Top-down Consistency
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Results

Table 3: Average error with ε = 1.0 at top level
Method Synthetic White Hawaiian Taxi
Naive 4,462,728,374 4,809,679,734 4,027,891,692 208,977,518
Hc 3,742.0 1,838.9 254.0 2,819.8
Hg 2,219.6 6,115.3 516.2 11,227.6

1 Naive strategy is usually worse and not used in the
hierarchical estimates.

2 Data dependent performance: Hc performs better in
dense region while Hg performs better in sparse
region

Figure 1: Merging estimates using weighted average vs. normal
average. x-axis: privacy budget per level.

3 Weighted average method consistently produces large
reductions in error at the top level

Table 4: Comparison to Bottom-up Aggregation
Part. Synth. White Hawaiian Taxi

Level 0
BU 78, 459.0 448, 909.0 13, 968.0 20, 731.0
Hc 32,480.0 17,000.0 1,381.0 10,547.0

Level 1
BU 1, 512.2 8, 722.0 270.1 10, 405.5
Hc 1,000.3 1,511.8 117.7 5,431.5

Level 2
BU 24.9 152.3 4.3 772.8
Hc 80.1 363.8 21.6 1, 601.8

4 BU has very low error at the leaves but higher error
everywhere else
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