

Introduction

Consider the table **Persons**(person_name, group_id, For each node τ in hierarchy, create differentially private location) and a hierarchy Γ on location associated with estimate $\tau \cdot \hat{H}$ of coco histogram H such that each group. A hierarchical count-of-counts histogram queries on this table: for each geographic region (e.g. the United States/New York), how many groups (e.g. households) in that region have j people (i.e. of size j).

Table 1: Persons			 A=SELECT groupid, 		
name g_id loc.			COUNT(*) AS size FROM		
Alice	1	a	Persons GROUPBY groupid		
Bob	1	a			
Carol	1	a	Table 2: A		
Dave	1	a	g_id size loc.		
Eve	2	b	1 4 a		
Frank	2	b	2 2 b		
Judy	3	a	3 1 a		
Nick	4	b	4 1 b		

The count-of-counts histograms can be obtained H=SELECT size, COUNT(*) FROM A GROUPBY by size

- <u>count-of-counts histogram</u> (coco) *H* is $H^{\text{root}} = [2, 1, 0, 1]$ $H^a = [1, 0, 0, 1]$
- unattributed histogram [1] H_q is $H_q^{\text{root}} = [1, 1, 2, 4]$ $H_{q}^{a} = [1, 4]$
- cumulative count-of-counts histogram H_c $H_c^{\text{root}} = [2, 3, 3, 4]$ $H_c^a = [1, 1, 1, 2]$

To protect privacy, the ϵ -differential privacy is applied at the person level. We used the geometric mechanism.

Definition (Sensitivity)

Given a query q (which outputs a vector), the global sensitivity of q, denoted by $\Delta(q)$ is defined as:

$$\Delta(q) = \max_{D_1, D_2} ||q(D_1) - q(D_2)||_1,$$

where databases D_1, D_2 contain the public Hierarchy and Groups tables, and differ by the presence or absence of one record in the Persons table.

Definition (Geometric Mechanism)

[2] Given a database D, a query q that outputs a vector, a privacy loss budget ϵ , the global sensitivity $\Delta(q)$, the geometric mechanism adds independent noise to each component of q(D) using distribution: $P(X = k) = \frac{1 - e^{-\epsilon}}{1 + e^{-\epsilon}} e^{-\epsilon |k| / \Delta(q)}$ (for $k = 0, \pm 1, \pm 2,$ etc.). This distribution is known as the double-geometric with scale $\Delta(q)/\epsilon$.

Problem Definition

- The entries are nonnegative integers
- The counts are accurate $(\tau, \widehat{H} \text{ and } \tau, H \text{ are close})$
- $\tau \cdot \widehat{H}$ matches publicly known total # of groups in τ
- Consistency: children histograms sum up to the parent.

Naive Strategy

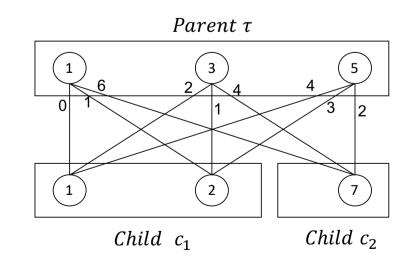
 $\widehat{H} = \arg\min_{\widehat{\mu}} ||\widetilde{H} - \widehat{H}||_p^p$ s.t. $\widehat{H}[i] \ge 0$ for all i and $\sum \widehat{H}[i] = G$

Solver: min-max algorithm [3], pool-adjacent violators (PAV), Gurobi

• Our proposed solution:

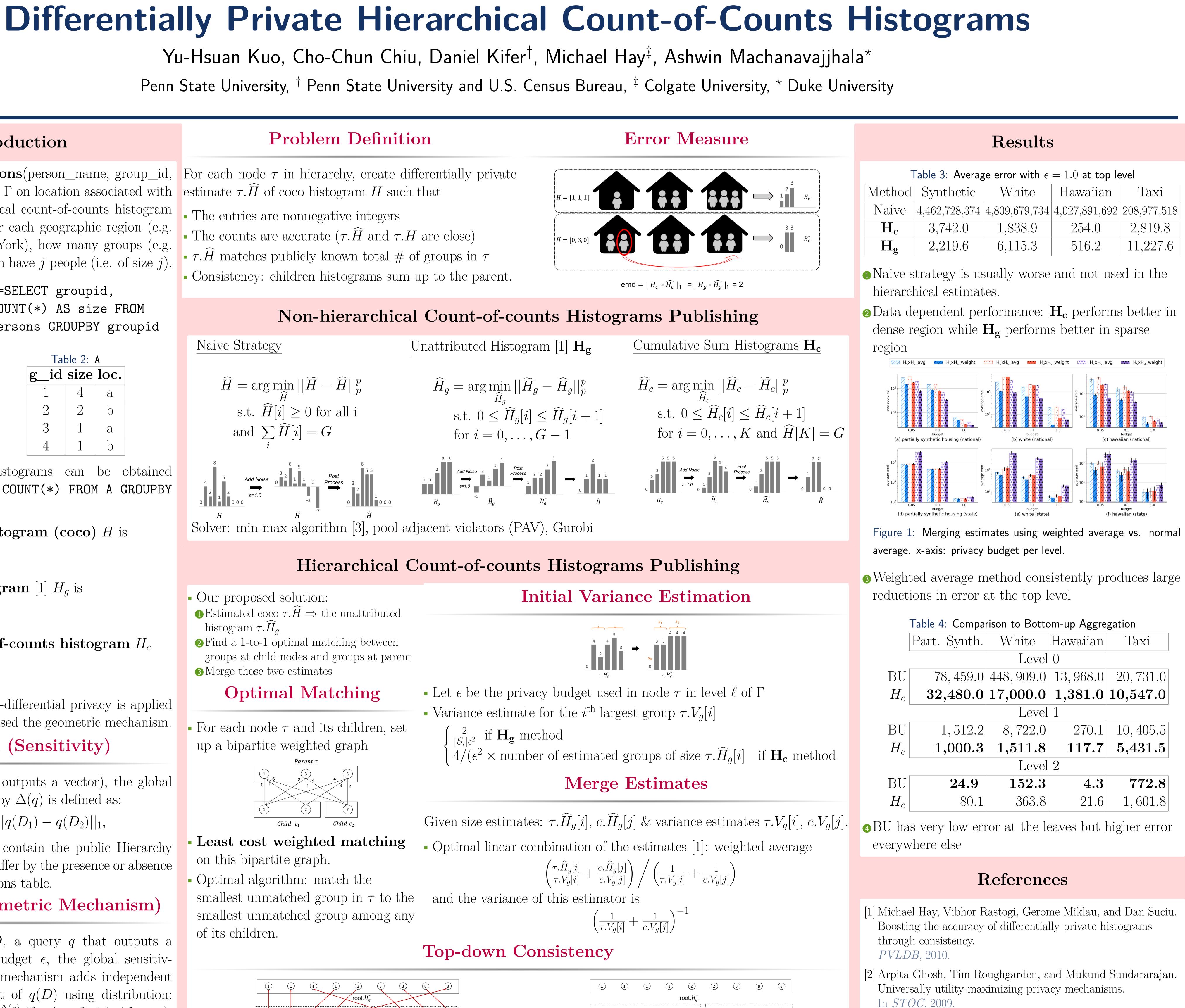
- **1** Estimated coco $\tau \cdot \hat{H} \Rightarrow$ the unattributed histogram τH_q
- 2 Find a 1-to-1 optimal matching between groups at child nodes and groups at parent **3** Merge those two estimates

• For each node τ and its children, set up a bipartite weighted graph



• Least cost weighted matching on this bipartite graph.

• Optimal algorithm: match the smallest unmatched group in τ to the smallest unmatched group among any of its children.



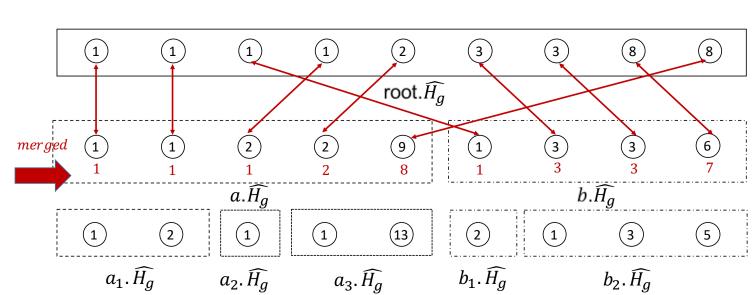


Table 3: Average error with $\epsilon = 1.0$ at top level								
nod	Synthetic	White	Hawaiian	Taxi				
ve	4,462,728,374	4,809,679,734	4,027,891,692	208,977,518				
С	3,742.0	1,838.9	254.0	2,819.8				
р С	2,219.6	6,115.3	516.2	11,227.6				

	Table 4: Comparison to Bottom-up Aggregation							
	Part. Synth.	White	Hawaiian	Taxi				
	Level 0							
SU	78,459.0	448,909.0	13,968.0	20,731.0				
H_c	$32,\!480.0$	$17,\!000.0$	$1,\!381.0$	$10,\!547.0$				
Level 1								
BU	1,512.2	8,722.0	270.1	10,405.5				
H_c	$1,\!000.3$	$1,\!511.8$	117.7	$5,\!431.5$				
Level 2								
BU	24.9	152.3	4.3	772.8				
H_c	80.1	363.8	21.6	1,601.8				

[3] RE Barlow and HD Brunk.

The isotonic regression problem and its dual.

Journal of the American Statistical Association, 1972.