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ABSTRACT
The increased availability of large-scale trajectory data provides
rich information for the study of urban dynamics. For example,
New York City Taxi & Limousine Commission regularly releases
source/destination information of taxi trips, where 173 million taxi
trips released for Year 2013 [1]. Such a big dataset provides us po-
tential new perspectives to address the traditional traffic problems.
In this paper, we study the travel time estimation problem. Instead
of following the traditional route-based travel time estimation, we
propose to simply use a large amount of taxi trips without using the
intermediate trajectory points to estimate the travel time between
source and destination. Our experiments show very promising re-
sults. The proposed big data-driven approach significantly outper-
forms both state-of-the-art route-based method and online map ser-
vices. Our study indicates that novel simple approaches could be
empowered by the big data and these approaches could serve as
new baselines for some traditional computational problems.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; H.4.0 [Information
Systems Applications]: General
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1. INTRODUCTION
The positioning technology is widely adopted into our daily life,

and a significant amount of trajectory data are collected. While
many existing methods try to outdo each other in terms of complex-
ity and algorithmic sophistication, in the spirit of “big data beats
algorithms”, we study whether some simple baseline methods can
be empowered by taking the benefit of big data. We revisit a tra-
ditional travel time estimation problem, which estimates the travel
time between an origin and a destination.

Existing travel time estimation approaches mostly fall into the
line of route-based method [2, 3, 4]. Given a source and a desti-
nation, these methods first identify a route and then estimate the
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Figure 1: Use historical trajectory o1 → o2 → o3 to estimate
the travel time from A to B.

travel time for this route by aggregating the travel time spent on
each segment (or subpath) based on historical trajectories. Such a
route-based method faces two major challenges.

Route mapping. The route-based method needs to obtain the
travel time from historical trajectories. But the actual trajectory
data may not map well onto the roads due to GPS positioning er-
rors, or imprecise road network data, or the time gap between two
adjacent observations. For example, in Figure 1, suppose we are
estimating the travel time from A to B. We will first identify a route
(the black road segments). Next, to estimate the travel time for
this route, we need to know the travel time spent on each segment.
And the time spent on each segment is obtained from historical tra-
jectories. One historical trajectory o1 → o2 → o3 is shown on
Figure 1. However, it is non-trivial to map these GPS points to the
actual road segments. Two potential routes are plotted in Figure 1
and both could be taken by the observed trajectory. In addition,
we often have missing data between two consecutive data points.
Therefore, it is not clear what is the actual route taken by an ob-
served trajectory.

Data sparsity. Trajectory data are sparse. Even with millions
of trip observations, there are a lot of road segments not covered
by any trajectory because of the non-uniform spatial distribution of
GPS locations in the city. In the Shanghai taxi data used in our ex-
periment, even with over 300 million GPS records, more than 50%
of road segments are not covered by any trajectory. The inference
of travel time is not accurate due to limited number of trajectories
covering the road segment. In addition to the spatial sparseness, the
trajectory data are temporally sparse too. Even if a road segment
is covered by a few trajectories, these trajectories may not be suffi-
cient to estimate the dynamic travel time that varies under different
conditions (e.g., peak time and weekends).

To avoid these challenges in the route-based method, we propose
a simple baseline method to estimate the travel time. Suppose we
are to predict travel time from A to B and we have hundreds of
historical trips from A to B. In this case, we do not need any



intermediate points, the average travel time of these historical trips
could be a reasonable estimation of the travel time from A to B.

In the real-world setting, even with a large database of millions
of trips, it is not easy to get sufficient number of trips with exactly
the same origin and destination. Therefore, we look for neighbor-
ing trips with a nearby origin and destination to estimate the travel
time and we call our method as neighbor-based method. However,
simply by taking the average of neighboring trips will yield a poor
performance because of variance in traffic at different times. For
example, the travel time during the peak hour could be much longer
compare with that in the midnight; there could also be abnormal
traffic changes due to holidays or traffic jams. Therefore, we fur-
ther propose to consider such traffic dynamics by making use of
traffic periodicity and making timely adjustments based on recent
traffic patterns.

In summary, the contributions of this paper are as follows. First,
we propose to estimate the travel time using neighboring trips from
the large-scale historical data. To the best of our knowledge, this is
the first work to estimate travel time without computing the routes.
Second, we improve our neighbor-based approach by addressing
the dynamics of traffic conditions. Finally, our experiments are
conducted on two large-scale real datasets. We show that our method
can outperform state-of-the-art methods as well as online map ser-
vices (Bing Maps and Baidu Maps).

The rest of the paper is organized as follows. Section 2 defines
the problem and provides an overview of the proposed approach.
Sections 3 discusses our method to weight the neighboring trips.
We present our experimental results in Section 4 and conclude the
paper in Section 5.

2. PROBLEM OVERVIEW
A trip pi is defined as a 5-tuple (oi, di, si, li, ti), which consists

of the origin location oi, the destination location di and the starting
time si. Both origin and destination locations are GPS coordinates.
We use li and ti to denote the distance and travel time for this trip,
respectively. Note that, here we assume the intermediate locations
of the trips are not available. In the real applications, it is quite
possible that we can only obtain such limited information about
trips due to privacy concerns and tracking costs. For example, the
largest public taxi data released by New York City [1] does not
contain any intermediate GPS points.

PROBLEM 1 (OD TRAVEL TIME ESTIMATION). Suppose we
have a database of trips, D = {pi}Ni=1. Given a query q =
(oq, dq, sq), our goal is to estimate the travel time tq with given
origin oq , destination dq , and departure time sq , using the histori-
cal trips in D.

An intuitive solution is finding similar trips as the query trip q
and using the travel time of those similar trips to estimate the travel
time for q. The problem can be decomposed to two sub-problems:
(1) how to define similar trips; and (2) how to aggregate the travel
time of similar trips. Here, we name similar trips as neighboring
trips (or simply neighbors) of query trip q. Note that aggregating
is not trivial because of varying starting times and traffic conditions.

We call trip pi a neighbor of trip q if the origin (and destination)
of pi are spatially close to the origin (and destination) of q. Thus,
the set of neighbors of q is defined as:

N (q) = {pi ∈ D|dist(oi, oq) ≤ τ and dist(di, dq) ≤ τ}, (1)

where dist() is the Euclidean distance of two given points.
With the definition of neighbors, a baseline approach is to take

the weighted average travel time of these trips as the estimation:

t̂q =
1

|N (q)|
∑

pi∈N (q)

witi. (2)

For each neighboring trip pi of q we define the scaling factor wi

calculated from the speed reference, so that witi ≈ tq . The scaling
factor wi enables us to model the dynamic traffic conditions across
different time.

In the following section, we will discuss the technical details of
our method.

3. CAPTURING THE TEMPORAL DYNAM-
ICS OF TRAFFIC CONDITIONS

As we discussed earlier, it is not appropriate to simply take the
average of all the neighbors of q because of traffic conditions vary
at different times. Now the question is, how can we derive a tem-
poral scaling reference to correspondingly adjust travel time on the
neighboring trips.

We first define the scaling factor of a neighboring trip pi on
query trip q as wi =

tq
ti

. One way to estimate si is using the speed
of pi and q. Let vi and vq be the speed of trip pi and q. Since we
pick a small τ to extract neighboring trips of q, it is safe to assume
that ∀pi ∈ N (q), li ' lq. With this assumption, we have:

wi =
tq
ti

=
lq/vq
li/vi

≈ vi
vq
.

However, vq is unknown, so we need to estimate
vi
vq

. Since the

average speed of all trips are stable and readily available, we try
to build a bridge from the actual speed ratio to the corresponding
average speed ratio for any given two trips. One solution is to as-
sume the ratio between vq and vi approximately equals to the ratio
between the average speed of all trips at sq and si. Formally, let
V (s) denote the average speed of all trips at timestamp s, we have
an approximation of wi as

wi ≈
vi
vq
≈ V (si)

V (sq)
. (3)

Considering such scaling factors using temporal speeds as the
reference, we can estimate the travel time of q using the neighbor-
ing trips as follows:

t̂q =
1

|N (q)|
∑

pi∈N (q)

ti ·
V (si)

V (sq)
. (4)

We show the effectiveness of this predictor in Figure 2. Each
point in the figure is a target trip. The prediction is plotted against
the actual trip travel time. We can see that the prediction is close to
the actual value. This indirectly implies the validity of assumptions
we made previously.

In order to compute the average speed V (si), we need to collect
all the trips in D which started at time si. However, for the query
trip q, the starting time sq may be the current time or some time in
the future. Therefore, no trips in D have the same starting time as
q. In the following, we discuss two approaches to predict V (sq)
using the available data.

3.1 Relative Temporal Speed Reference
In this section, we assume that V (s) exhibits a regular daily

or weekly pattern. We fold the time into a relative time window
Trela = {1, 2, · · · , T}, where T is the assumed periodicity. For
example, using a weekly pattern with 1 hour as the basic unit, we
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Figure 2: Estimated travel time against actual travel time.
Each point is a trip, where the estimation t̂q is plotted against
tq . The green line is the linear fitting of the points, which is
closer to the red line y = x. This means the prediction is close
to the actual value.

have T = 7 × 24 = 168. Using this relative time window, we
represent the average speed of the k-th time slot as Vk, ∀k ∈ Trela.
We call {Vk|k ∈ Trela} relative temporal reference.

We use ki to denote the time slot to which si belongs. As a
result, we can write V (si) = Vki . To compute Vki , we collect all
the trips in D which fall into the same time slot as pi and denote
the set as S(pi). Then, we have

Vki =
1

|S(pi)|
∑

pj∈S(pi)

lj
tj
. (5)

The relative speed reference mainly has the following two ad-
vantages. First, the relative speed reference is able to alleviate the
data sparsity issue. By folding the data into a relative window, we
will have more trips to estimate an average speed with a higher
confidence. Second, the computation overhead of relative speed
reference is small, and we could do it offline.

3.2 Absolute Temporal Speed Reference
In the previous section, the relative speed reference assumes the

speed follows daily or weekly regularity. However, in real scenario,
there are always irregularities in the traffic condition. For example,
during national holidays the traffic condition will significantly de-
viate from the usual days. Therefore, assuming we have enough
data, it would be more accurate if we could directly infer the aver-
age speed at any time slot t from the historical data. Following this
idea, we propose to directly capture the traffic condition at different
time slots with an absolute temporal speed reference. To this end,
we partition the original timeline into time slots based on a certain
time interval (i.e., 1 hour). All historical trips are mapped to the
absolute time slots Tabs = {1, 2, 3, · · · } accordingly, and the av-
erage speed {Vk|k ∈ Tabs} are calculated as the absolute temporal
speed reference.

The challenge in absolute temporal speed reference is that for
a given query trip with starting time sq in the near future (e.g.
next hour), we need to estimate the speed reference V (sq). We
estimate V (sq) with seasonal ARIMA model by considering fac-
tors such as the average speed of previous hours, seasonality, and
random noise. Formally, given the time series of average speed:
{V1, V2, . . . , VM}, our goal is to compute VM+1 as follows:

VM+1 = f(V1, . . . , VM ). (6)

In our problem, the average speed Vt exhibits a strong weekly
pattern. Thus, instead of directly applying the ARIMA model to
{Vt}, we first compute the sequence of seasonal difference {Yt}:

Yt = Vt − Vt−T , (7)

where T is the period (e.g., one week). Note that our ARIMA
model with the seasonal difference is a special case of the more
general class of Seasonal ARIMA (SARIMA) model for time series
analysis. We refer interested readers to [5] for detailed discussion
about the model.

Then, we apply the ARIMA model to {Yt}:(
1−

p∑
i=1

φiL
i

)
(1− L)d Yt =

(
1 +

q∑
i=1

θiL
i

)
εt, (8)

where L is the lag operator.
Since the last term εt is white noise, whose value is unknown

but the expectation E(εt) = 0, we have estimator Ŷt = Yt − εt.
Together with Equation (7), we have

V̂t = Ŷt + Vt−T . (9)

4. EXPERIMENT

4.1 Evaluation Settings
We conduct experiments on datasets from two different countries

to evaluate our approach.
NYC Taxi dataset [1] contains 173, 179, 771 taxi trips from 2013/

01/01 to 2013/12/31. Each trip contains information about pickup
location and time, drop off location and time, trip distance, fare
amount, etc. We use the subset of trips within the borough of Man-
hattan (the boundary is obtained from wikimapia.org), which has
127,534,711 trips. On average, we have 349, 410 trips per day.

Shanghai Taxi dataset [6] contains the trajectories of 2, 600 taxis
during two months in 2006, which enables us to compare with the
existing route-based methods. In total we have over 300 million
GPS records. A GPS record has following fields: vehicle ID, speed,
longitude, latitude, occupancy, and timestamp. To retrieve taxi trips
in this dataset, we rely on the occupancy bit of GPS records. This
occupancy bit is 1 if there are passengers on board, and 0 otherwise.
For each taxi, we define a trip as consecutive GPS records with oc-
cupancy equal to 1. We get 5, 815, 470 trips after processing the
raw data.

Methods for evaluation. We systematically compare the fol-
lowing methods: linear regression (LR), neighbor average (AVG),
temporally weighted neighbors (TEMP), segment-based estimator
(SEGMENT), subpath-based estimator (SUBPATH), online map ser-
vice (BING and BAIDU). The TEMP is our proposed method. More
specifically, we name the method using relative-time speed ref-
erence as TEMPrel (Section 3.1), and the method using absolute
temporal reference as TEMPabs (Section 3.2). The SEGMENT is a
baseline method used in [7], which has a drawback that the tran-
sition time at intersections cannot be captured. Therefore, Wang
et al. [7] propose the SUBPATH to estimate the target route with
concatenated subpaths, where each subpath is defined as multiple
road segments. We use Bing Maps for NYC taxi dataset and Baidu
Maps for Shanghai dataset.

Evaluation metrics. We use mean absolute error (MAE), mean
relative error (MRE), median absolute error (MedAE) and median
relative error (MedRE) to evaluate the travel time estimation meth-
ods:

MAE =

∑
i |yi − ŷi|
n

, MRE =

∑
i |yi − ŷi|∑

i yi
,

MedAE = median(|yi − ŷi|), MedRE = median

(
|yi − ŷi|

yi

)
,

where ŷi is the travel time estimate, yi is the ground truth, and
median returns the median value of a vector. We add the median



error as evaluation metric as well, because there are anomalous trips
in the dataset that differ significantly from most trips.

4.2 Performance on NYC Data
We use trips from January to November as training and the ones

in December as testing. As for the BING method, due to the lim-
ited quota, we sample 260k trips in December as testing. The over-
all accuracy comparison are shown in Table 1. Since NYC data
only have endpoints of trips, we cannot compare our method with
route-based methods. We will compare with theses methods using
Shanghai data in Section 4.3.

Table 1: Overall Performance on NYC Data
Method MAE (s) MRE MedAE (s) MedRE
LR 194.604 0.2949 164.820 0.3017
AVG 178.459 0.2704 120.834 0.2345
TEMPrel 149.815 0.2270 97.365 0.1890
TEMPabs 143.311 0.2171 98.780 0.1907
Comparison with Bing Maps (260K testing trips)
BING 202.684 0.3157 134.000 0.2718
BING(traf) 242.402 0.3776 182.000 0.3395
TEMPabs 135.365 0.2108 94.940 0.1839

We first observe that our method is better than the linear regres-
sion (LR) baseline. This is expected because LR is a simple baseline
which does not consider the origin and destination locations.

Considering temporal variations of traffic condition improves the
estimation performance. All the TEMP methods have significantly
lower error compared with the AVG method. The improvement of
TEMPabs over AVG is about 35 seconds in MAE, i.e. 20% im-
provement. Furthermore, the absolute speed reference (TEMPabs)
is better than the relative (i.e., weekly) speed reference (TEMPrel),
because the traffic condition does not strictly follow the weekly
pattern, but has some irregular days such as holidays.

Comparing with BING on the 260k testing trips, TEMPabs sig-
nificantly outperforms BING by 67 seconds. BING underestimates
the trips without considering traffic, where 64.53% testing trips
are underestimated. However, BING(traf) by considering traf-
fic (the query was sent to the API at the same time and the same
day of the week), 75.02% testing trips are overestimated.

4.3 Performance on Shanghai Data
In this section, we conduct experiments on Shanghai taxi data to

compare our method with SEGMENT and SUBPATHmethods. Both
SEGMENT and SUBPATHmethods use the travel time on individual
road segments or subpaths to estimate the travel time for a query
trip. Due to data sparsity, we cannot obtain travel time for every
road segments. In our experiment, to avoid the missing value issue,
we only select the testing trips that have values on every segments
of the trip. The testing set contains 2, 138 trips in total. We use the
same training set and testing set for different methods.

The comparison among different methods is shown in Table 2.
Our neighbor-based method significantly outperform other meth-
ods. The simple method AVG is 17 seconds better than BAIDU in
terms of MAE. By considering temporal factors, method TEMPrel
and TEMPabs further outperform AVG method. SUBPATH method
outperforms SEGMENT method, which is consistent with previous
work [7]. However, SUBPATH is still 21 seconds worse than our
method TEMPrel method in terms of MAE. Our method can be

Table 2: Overall Performance on Shanghai Data
Method MAE (s) MRE MedAE (s) MedRE
LR 130.710 0.6399 138.796 0.6173
BAIDU 111.484 0.5451 73.001 0.5001
SEGMENT 119.833 0.5866 84.704 0.4947
SUBPATH 113.566 0.5560 75.913 0.4820
AVG 94.202 0.4615 60.183 0.3739
TEMPrel 92.428 0.4527 55.317 0.3678

considered as a special case SUBPATH method, where we use the
whole paths from the training data to estimate the travel time for a
testing trip. Given enough number of whole paths, it is better to use
the whole paths instead of subpaths.

Since the Shanghai taxi data are much more sparse than NYC
data, we do not show the results of TEMPabs on Shanghai dataset.
The main idea here is to show that TEMPrel can outperform the
existing methods, and with more data our other approaches should
outperform the TEMPrel as well as shown in NYC data.

5. CONCLUSION
This paper demonstrates that one can use large-scale trip data

to estimate the travel time between an origin and a destination in
a very efficient and effective way. Our proposed method retrieves
all the neighboring historical trips with the similar origin and es-
timation locations and estimate the travel time using those neigh-
boring trips. We conduct experiments on two large-scale real-world
datasets and show that our method can greatly outperform the state-
of-the-art methods and online map services.
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